
Security Review For
Mach Finance

Public Best Efforts Contest Prepared For: Mach Finance
Lead Security Expert: eeyore
Date Audited: December 17 - December 21, 2024

1



Introduction
Mach Finance is an upcoming borrow / lending platform native to Sonic, built on top of
Compound v2.

Scope
Repository: Mach-Finance/contracts

Branch: main

Audited Commit: 60e06b7bc8d59055cf399d5c8b09f77482550a85

Final Commit: 521f456cfab033f87742da94a20cff87bfc08f9b

For the detailed scope, see the contest details.

Findings
Each issue has an assigned severity:

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

• High issues are directly exploitable security vulnerabilities that need to be fixed.

Issues Found

High Medium

0 1

Issues Not Fixed or Acknowledged

High Medium

0 0

Security experts who found valid issues

1



0xpetern
0xRiO
miaowu
fuzzysquirrel
c3phas

bbl4de
d4y1ight
silver_eth
zxriptor
vahdrak1

0xc0ffEE
zanderbyte
eeyore

2



Issue M-1: Missing staleness check in
PythOracle can lead to forced liquidations
and theft of funds from borrowers.
Source: https://github.com/sherlock-audit/2024-12-mach-finance-judging/issues/41

Found by
0xRiO, 0xc0ffEE, 0xpetern, bbl4de, c3phas, d4y1ight, eeyore, fuzzysquirrel, miaowu,
silver_eth, vahdrak1, zanderbyte, zxriptor

Summary
The Pyth integration contract uses the getPriceUnsafe() function to retrieve the latest
reported price from a specified price feed.

However, Pyth does not have sponsored price feeds on the Sonic chain, that will
guaranty the proper data freshness. As such, this function depends on users or the Mach
protocol to update the price data with fresh values.

As a result, the prices retrieved using getPriceUnsafe() can be significantly outdated,
even with the protocol best efforts to maintain price freshness due to its keeper/bot
outages.

The documentation for getPriceUnsafe() incorrectly suggests that it will revert with a St
alePrice error when the price is outdated. In reality, this function returns a price with its
associated timestamp, regardless of how old the timestamp is, as long as the price was
updated at some point in the past.

This issue becomes critical if the prices used by the protocol are not updated for
extended periods, during which significant price changes could occur for assets being
borrowed or used as collateral in the project.

Root Cause
The Pyth integration contract does not perform a staleness check, and did not switch to
fallback oracle in such situation. It only verifies that the price is > 0 (here), which is
insufficient.

Although Compound V2 does not enforce staleness checks in its Chainlink oracle
integration, the situation differs because Chainlink prices cannot be updated directly by
anyone. Even stale prices from Chainlink are deemed acceptable under these
circumstances, especially to avoid blocking liquidations.

3



In contrast, Pyth allows anyone to update the price feed (via updatePriceFeeds()
function), in situation where the new price adheres to the rule that it must be newer than
the previous price and is a valid Pyth price component for given price feed.

This introduces a vulnerability where price updates can be manipulated to extract value
from users.

Internal pre-conditions
None.

External pre-conditions
• Pyth prices have not been updated for an extended period.

Attack Path
An attacker can construct a transaction that updates the price feed with a desired value
reported at a timestamp between the last update and the current time. This enables the
attacker to inflate the price of borrowed assets and deflate the price of collateral assets,
leading to forced liquidations.

The reported prices can originate from any valid price component with timestamp within
the allowed timeframe. As observed in real-world scenarios, asset prices can rise by 10%
in one day and fall by 20% on another day (e.g., FTM).

Consider a three-day timeframe during which Pyth prices for two supported assets are
not updated:

1. Day 1: Asset A and Asset B prices are accurately reported.

2. Day 2: Both assets experience a 10% price increase, but the prices are not updated
in Pyth. Although exploitation is possible at this stage, the attacker may wait
another day.

3. Day 3: Both assets experience a 20% price drop.

The attacker can then update:

• The borrow asset price to the inflated value from Day 2 (+10%).

• The collateral asset price to the deflated value from Day 3 (-20%, or ~-10% from
Day 1).

This manipulation allows the attacker to extract maximum liquidable value from users,
profiting from the actual prices of the assets.

This attack would not be possible with fresh price updates, as the user shortfall would
not fall below 1 in the given scenario of volatile prices.

4



Impact
• Direct loss of funds from forced liquidation of users, in situations where accurate
price updates would prevent shortfalls from falling below 1.

Mitigation
• Enforce a staleness check when using getPriceUnsafe(). Utilize a fallback API3
oracle if freshness criteria are not met.

• Develop and deploy an off-chain bot (with a backup mechanism) to push fresh Pyth
data to the Sonic network. The bot should use a short heartbeat and low price
deviation triggers.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Mach-Finance/contracts/pull/8

5



Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

6


